

Literature Review

Linking the Life Cycle of *Sarcoptes scabiei* to Diagnosis, Treatment, and Control

Saleha Sungkar

Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

*Corresponding author: salehasungkar@yahoo.com
Received 24 June 2025; Accepted 31 October 2025
<https://doi.org/10.23886/ejki.13.1162.1>

Abstract

*Scabies is a neglected tropical disease caused by the mite Sarcoptes scabiei, with an annual incidence of 455 million cases. Despite its significant global burden, it remains underdiagnosed and undertreated, largely due to insufficient consideration of the parasite's biological behavior. The mite's life cycle, comprising egg, larval, nymph, and adult stages, plays a pivotal role in determining the success or failure of diagnostic and treatment strategies. Many conventional treatments do not effectively target all life stages, especially the egg stage, resulting in incomplete treatment and frequent reinfection. This literature review aims to critically examine the life cycle of *S. scabiei* and analyze how each developmental stage can inform more effective diagnostic, therapeutic, and public health responses. Understanding how the biology of the mite intersects with the timing and sensitivity of clinical interventions is essential for optimizing outcomes, highlighting the need for repeat treatments and the development of ovicidal agents or vaccines. By integrating insights from parasitology, immunology, and epidemiology. This review advocates for a multidisciplinary, life cycle-based framework to enhance early detection, improve treatment efficacy, and support sustainable control measures. When aligned with mass drug administration, hygiene promotion, and health education initiatives, such an approach offers synergistic potential to break transmission cycles and manage outbreaks more effectively. Advancing scabies control will ultimately depend on embedding life cycle-informed strategies into both clinical practice and public health programs.*

Keywords: scabies, *Sarcoptes scabiei*, life cycle, treatment, control.

Hubungan Siklus Hidup *Sarcoptes scabiei* dengan Diagnosis, Pengobatan, dan Pengendalian

Abstrak

*Skabies adalah penyakit tropis terabaikan yang disebabkan oleh tungau *Sarcoptes scabiei*, dengan jumlah kasus per tahun mencapai 455 juta kasus. Meskipun memiliki beban global yang signifikan, skabies sering tidak terdiagnosa dan tidak tertangani secara memadai, terutama karena kurangnya pemahaman terhadap perilaku biologis parasit. Siklus hidup tungau, yang terdiri atas tahap telur, larva, nimfa, dan dewasa berperan penting dalam menentukan keberhasilan strategi diagnosis dan pengobatan. Banyak terapi konvensional tidak efektif terhadap semua tahap perkembangan, khususnya tahap telur, sehingga mengakibatkan pengobatan yang tidak tuntas dan reinfeksi berulang. Tinjauan pustaka ini bertujuan untuk mengkaji secara kritis siklus hidup *S. scabiei* serta menganalisis bagaimana setiap tahap perkembangan dapat menjadi dasar bagi pendekatan diagnosis, terapi, dan intervensi kesehatan masyarakat yang lebih efektif. Pemahaman hubungan tahapan biologis tungau dan waktu serta intervensi klinis sangat penting untuk mengoptimalkan hasil pengobatan, termasuk kebutuhan pengobatan ulang dan pengembangan agen ovisidal atau vaksin. Dengan mensintesis wawasan bidang parasitologi, imunologi, dan epidemiologi, tinjauan pustaka ini mendorong penerapan kerangka kerja multidisipliner berbasis siklus hidup guna meningkatkan deteksi dini, efektivitas pengobatan, dan pengendalian jangka panjang yang berkelanjutan. Ketika strategi ini diintegrasikan dalam program pemberian obat massal, promosi kebersihan, dan edukasi kesehatan, potensi sinergis dapat tercapai untuk memutus rantai penularan dan menangani skabies lebih efektif. Keberhasilan kontrol skabies sangat bergantung pada penerapan strategi berbasis siklus hidup ke praktik klinis dan program kesehatan masyarakat.*

Kata kunci: skabies, *Sarcoptes scabiei*, siklus hidup, terapi, kontrol.

Introduction

Scabies, a contagious skin disease caused by the mite *Sarcoptes scabiei* var. *hominis*, remains a pressing global public health concern, particularly in tropical and subtropical regions. The World Health Organization classifies scabies as a neglected tropical disease (NTD), underscoring its disproportionate burden in low-resource settings. With an estimated 455 million annual cases worldwide, scabies persists across all age groups but disproportionately affects children, the elderly, and immunocompromised individuals.^{1,2}

Institutional settings such as orphanages and boarding schools often report high scabies rates: 87% in a Thai orphanage, 46% among Malaysian halfway house children, and up to 68% in Jakarta boarding schools.³⁻⁵ Scabies severely impairs quality of life, leading to sleep disturbances, social stigma, and secondary bacterial infections like impetigo and cellulitis. This, in turn, affects school performance and productivity. For example, Sudarsono found in Aceh that 15.5% of students showed academic decline after contracting scabies.⁶

Treatment and control strategies frequently involve mass drug administration (MDA) using ivermectin or permethrin. These have proven effective in high-prevalence settings.⁷ However, reinfection remains a major hurdle, often driven by incomplete household treatment, poor community awareness, and adherence issues.⁸ In this context, public health education and community engagement are critical to breaking transmission chains.

A key to effective scabies control lies in linking intervention strategies to the life cycle of *S. scabiei*. The mite's life cycle includes egg, larva, protonymph, tritonymph, and adult stages. Female mites lay 2–3 eggs daily, enabling rapid population growth if untreated.⁹ A deeper understanding of each developmental stage enhances diagnosis, informs treatment timing, and guides public health initiatives aimed at eliminating scabies from high-risk communities. Therefore, this literature review aims to provide an overview of *S. scabiei*'s life cycle and analyze how each developmental stage can inform more effective diagnostic, therapeutic, and public health responses.

Morphology of *Sarcoptes scabiei*

General Shape and Size

The adult *S. scabiei* mite is a small, oval-shaped arthropod, typically measuring around 0.2 to 0.5 millimeters in length. Its body morphology is characterized by a broad, rounded form, which facilitates burrowing into the stratum corneum of the host's skin. The mites appear as whitish or translucent specks when examined with the naked eye, especially when viewed under a microscope. Understanding this basic shape aids in differentiating *S. scabiei* from other potential parasitic forms, such as demodex mites or occasional insect infestations.

Body Segmentation and Regions

The body of the scabies mite can be divided into two primary regions: the cephalothorax and the abdomen. The cephalothorax houses the mouthparts and is generally more rounded.¹⁰ The abdomen is soft and flexible, characteristic of members of the Sarcoptidae family. Notably, the scabies mite lacks distinct segmentation, making its external structure appear smooth and continuous.

Mouthparts

The mouthparts of *S. scabiei* are specialized for feeding. The anterior portion of the mite features a pair of chelicerae (jaws) that are prominent and adapted for burrowing and feeding. These mouthparts allow the mite to penetrate the skin layers and access interstitial tissue fluids, which serve as a source of nourishment. The presence of such specialized feeding apparatus is crucial for its survival and propagation within the host.¹⁰

Legs and Locomotion

S. scabiei has eight legs, characteristic of arachnids, and these limbs contribute to its ability to navigate the skin surface. The legs are short and robust, suitable for burrowing rather than extensive mobility. Notably, the legs of the female mite are equipped with claw-like structures that enable them to anchor themselves within the burrows they create. The front pair of legs is longer and more flexible than the posterior ones, providing agility in maneuvering and facilitating attachment to the skin. Upon hatching,

the larva emerges with only six legs, unlike the adult, which possesses eight.¹⁰

Biology and Life Cycle of *Sarcoptes scabiei*

Understanding the biology and life cycle of *S. scabiei* is fundamental to comprehending its transmission dynamics and informing targeted control strategies. The mite undergoes a complete metamorphosis through four distinct stages: egg, larva, nymph, and adult. Each stage occurs on or within the host's skin, primarily in the stratum corneum, and is associated with specific biological behaviors that contribute to the persistence and spread of scabies infestations.¹⁰

Transmission and Initiation of Infestation

Infestation begins when a gravid female mite transfers from an infested individual to a new host through prolonged skin-to-skin contact. Female mites crawl on the skin surface at approximately 2.5 cm per minute in search of suitable burrowing sites. Once a site is selected—often in skin folds such as the wrists, interdigital spaces, elbows, genitalia, or breasts—the mite uses specialized appendages (ambulacra) to anchor itself and penetrate the skin. Within 30 minutes, the female secretes proteolytic enzymes in saliva that dissolve skin layers and initiate tunneling into the stratum corneum.¹⁰

Mating and Oviposition

Mating typically occurs within the superficial skin burrows. After copulation, female mites create a serpiginous tunnel at a depth extending between the stratum corneum and stratum granulosum, progressing at 0.5–5 mm per day. Female mites continue to dig these tunnels throughout their lifespan—approximately 30–60 days—laying 2 to 3 eggs daily, with a lifetime total of 40–50 eggs. Egg deposition often coincides with fecal excretion and tunnel expansion, which mostly occurs at night. However, only around 10% of these eggs successfully develop into adult mites, and an average infested individual may carry approximately 11 adult female mites.¹¹

Life Cycle

Egg Stage (Days 0–3)

Eggs are deposited within the tunnels and remain embedded in the superficial epidermal layer. They hatch after approximately 3 to 4 days, depending on ambient temperature and humidity. This initial stage marks the beginning of mite development and is critical for understanding timing of treatment interventions, especially those not ovicidal.¹¹

Larval Stage (Days 3–6)

Newly hatched larvae are about 110 × 140 µm in size and possess three pairs of legs. After hatching, they exit the maternal tunnel and either stay on the skin surface or create shallow, temporary burrows to feed on keratin and tissue fluids. Within 3–4 days, they molt into the nymphal stage through a process known as ecdysis.¹⁰

Nymphal Stage (Days 6–14)

Larvae transform into nymphs with four pairs of legs, progressing through two forms: protonymphs and tritonymphs. Female undergo two developmental phases, increasing in size from 160 µm to 250 µm. In contrast, male nymphs typically undergo a single nymphal stage. This stage spans approximately 7–10 days, after which the mites molt into adults.¹¹

Adult Stage and Reproduction (Days 10–21)

Adult mites emerge around 10–14 days post-hatching. They are sexually dimorphic, with males smaller than females. Males typically live for 1–5 days, focusing on locating and mating with females, while females may live for up to 30 days. Following successful mating, the cycle restarts as fertilized females burrow into the skin to lay eggs, perpetuating infestation.¹⁰

Environmental and Host Factors Influencing Development

The survival and reproduction of *S. scabiei* are influenced by environmental conditions. Optimal mite survival occurs in warm and humid environments,

which explains the higher prevalence in tropical regions. Off-host survival is limited, up to 24-36 hours, but can be prolonged under high humidity and lower temperatures, reinforcing the importance of environmental hygiene in control strategies.¹⁰ Host-related factors, such as skin thickness, immune status, and hygiene, modulate the severity and spread of infestation.

Clinical Symptoms of Scabies

Scabies presents with a broad range of clinical symptoms, which may vary depending on the host's age, immune status, and infestation severity. The hallmark symptom is intense pruritus, typically more severe at night due to the mites' nocturnal activity. This itching results from a hypersensitivity reaction to mite antigens including saliva, feces, and irritation from mite burrowing.¹² Persistent scratching can lead to excoriations and open lesions, increasing the risk of secondary bacterial infections and complicating the clinical picture.¹³

Skin lesions are another common manifestation. Burrows, which are thin, linear or serpiginous tunnels, are created by female mites in the superficial epidermis as they lay eggs. These are most often found in the web spaces of the fingers, wrists, elbows, and genital regions, although they may be subtle and missed during clinical evaluation. Surrounding these burrows, patients frequently develop erythematous papules or vesicles, which commonly appear in warm, moist areas such as the axillae, wrists, finger web spaces, waistline, and groin.¹⁴ In chronic or untreated cases, these lesions may evolve into crusted plaques or become secondarily infected. Some individuals, particularly children or those with heightened immune responses, may also develop scabetic nodules, which are firm, pruritic, and persistent lesions resulting from granulomatous inflammation around mite remnants.¹⁵

A more severe variant, known as crusted scabies, occurs predominantly in immunocompromised patients, the elderly, or individuals with disabilities. It is characterized by widespread thick, crusted plaques that harbor thousands to millions of mites, leading to extremely high contagiousness. Unlike classic scabies, crusted scabies often involves the face, including hair

follicles, and presents with muted or absent pruritus, making early detection difficult. The extensive skin damage also predisposes patients to secondary bacterial infections.¹⁴

Secondary bacterial infections are a common complication of scabies, particularly in settings with limited hygiene or healthcare access. Scratching due to intense pruritus often leads to skin barrier disruption, which facilitates infection by organisms such as *Staphylococcus aureus* or *Streptococcus pyogenes*. These infections may manifest as impetigo, folliculitis, or cellulitis, and in rare cases, can result in serious complications like post-streptococcal glomerulonephritis.¹⁶

Diagnosis is primarily clinical, based on the presence of typical symptoms and lesion distribution. Confirmation can be achieved through skin scraping, dermoscopy, or adhesive tape tests to identify mites, eggs, or fecal pellets.¹⁷ However, the broad variability in presentation, especially in atypical or asymptomatic cases, often leads to misdiagnosis or underdiagnosis, emphasizing the need for a high index of suspicion and clinical awareness.

Diagnosis: Challenges and Opportunities Based on Life Cycle

Understanding the life cycle of *S. scabiei* is pivotal in optimizing diagnostic timing and selecting appropriate methods for scabies detection. Each developmental stage of the mite presents distinct diagnostic challenges and opportunities, influencing sensitivity, specificity, and ultimately the accuracy of case identification. Strategic alignment of diagnostic tools with the biological behavior of the mite can improve early detection, treatment, and outbreak control, particularly in vulnerable and high-risk populations.

Patient History

The diagnostic process begins with a comprehensive patient history that captures the key clinical features and exposure risks. Patients frequently report intense pruritus, often worse at night, alongside the appearance of a rash or skin lesions. Understanding the duration, pattern, and severity of itching offers valuable diagnostic clues. A family or household history of similar symptoms

strongly raises the index of suspicion, as close contacts often present concurrently. This symptoms has been confirmed in clinical studies, further supporting its role in diagnostic reasoning. Recent exposure to communal living environments—such as schools, shelters, or prisons, can provide context for a possible infestation, particularly when outbreaks have been reported in these settings.¹⁸

Clinical Examination

Following history taking, a focused physical examination is conducted. Clinicians look for characteristic skin lesions, particularly burrows, which appear as slightly raised, erythematous lines and may contain mite fecal matter or eggs. Burrows are most commonly found in the web spaces between the fingers, on the wrists, elbows, armpits, and genital area. Erythematous papules, vesicles, and nodules often accompany these burrows and are frequently associated with scratching and secondary bacterial infection. In more severe or chronic cases, particularly crusted scabies, patients may present with thick crusts or persistent nodules resulting from an exaggerated immune response. These skin changes can complicate diagnosis and may be mistaken for other dermatological conditions.¹⁹

IACS Diagnostic Criteria

To standardize scabies diagnosis globally, the International Alliance for the Control of Scabies (IACS) introduced consensus criteria that classify cases into three levels of diagnostic certainty: confirmed, clinical, and suspected. The IACS criteria enhance diagnostic consistency across clinical and research settings, facilitating better public health surveillance and guiding treatment protocols.²⁰

Level A – Confirmed Scabies requires direct identification of the mite, eggs, or fecal pellets via skin scraping, biopsy, or dermoscopy. This level provides the highest diagnostic certainty and is essential in clinical trials and outbreak settings.

Level B – Clinical Scabies applies when a patient presents with intense nocturnal itching, typical lesions (e.g., burrows, papules),

and a history of contact with an affected individual. While this level does not require laboratory confirmation, it emphasizes the importance of clinical expertise.

Level C – Suspected Scabies is used when the clinical picture is suggestive but lacks confirmatory features. This level is particularly important in resource-limited settings, where diagnostic tools may not be readily available, and scabies must be diagnosed based on signs, symptoms, and epidemiological context.

Life Stage-Specific Diagnostic Considerations

Egg Stage

At the egg stage, mites are embedded in the superficial epidermis and are generally not detectable via traditional diagnostics. While polymerase chain reaction (PCR) techniques may theoretically detect mite DNA during this stage. In practice, most diagnoses rely on symptomatic indicators such as itching, which may be absent early in the infestation. This latency complicates detection and delays diagnosis until larvae or later stages emerge.²¹

Larval Stage

Larvae, characterized by three pairs of legs, are small and difficult to detect using conventional methods. Although skin scraping and microscopy may occasionally reveal larvae, their small size and sparse numbers result in a high likelihood of false negatives. It is during this stage that initial pruritus may develop, prompting medical attention, yet diagnostic sensitivity remains low.²²

Nymph Stage

The protonymph and tritonymph stages are more diagnostically accessible due to their increased size and eight-legged morphology. These stages can be visualized more effectively via skin scraping or dermoscopy, and studies have shown improved detection rates using enhanced visualization tools. Nymphs are frequently encountered in symptomatic patients and can be critical for establishing an accurate diagnosis.²³

Adult Stage

Adult mites represent the most detectable life stage. They are readily identifiable through skin scrapings, dermoscopy, and adhesive tape tests. Dermoscopy improves detection by allowing the clinician to scan broader areas of skin and identify characteristic signs, such as the "delta-wing jet sign" or burrow tracks. Diagnostic sensitivity and specificity peak during this stage, enabling confident clinical decisions and timely treatment.²⁴

Timing of Infestation and Diagnostic Sensitivity

Scabies infestation often involves a delay of 4-6 weeks between mite exposure and the onset of symptoms such as itching or visible lesions. Reflecting the early egg and larval stages, this incubation period can confound diagnosis, particularly in individuals with no prior exposure. Due to their nonspecific presentations, early infestations are frequently mistaken for other dermatological conditions, including eczema or impetigo.²⁴ During this asymptomatic window, traditional methods are likely to miss cases unless supplemented by sensitive molecular tools like PCR or antigen-based serological tests. The low mite burden in early-stage infestations reinforces the need for high-sensitivity diagnostics capable of detecting minimal quantities of mite DNA or early immunological responses.²⁵

Traditional vs Molecular Diagnostic Techniques

Traditional Methods

Diagnosing scabies relies on four primary methods: skin scraping, dermoscopy, adhesive tape tests, and microscopy. Skin scraping is the gold-standard technique, collecting samples from suspected lesions to identify mites, eggs, or fecal pellets under a microscope. However, its sensitivity is limited (50% to 70%), particularly in early infestations or low mite density.¹⁹ The clinician's skill and experience influence the accuracy of the method.

Dermoscopy is a non-invasive approach to detect burrows and mites more clearly than the naked eye. It improves diagnostic sensitivity, even among less experienced practitioners. However, dermoscopy serves mainly as a supportive tool, as it cannot confirm diagnosis without direct identification of the mites.²⁵ The adhesive tape test is a simpler method in

which clear tape is applied to the skin and removed to capture surface mites and debris. This test is useful for less invasive sampling, though confirmation via microscopy is still needed.²⁵

Microscopic examination plays a crucial role in all of the above methods by enabling visualization of *S. scabiei*'s morphological features, including mites, eggs, and fecal matter. Nonetheless, its diagnostic utility is limited by the low mite burden typically found in ordinary scabies which can result in false negatives, particularly in chronic or atypical presentations. Despite these limitations, traditional methods remain essential, especially in low-resource settings where molecular diagnostics may not be available.²⁵

Molecular Methods

Molecular diagnostic tools represent a significant advancement in the detection of *Sarcoptes scabiei*, particularly in overcoming limitations of traditional diagnostic methods in cases of low mite burden or atypical presentations. PCR is the most widely used molecular approach. It amplifies mite DNA from skin scrapings or biological samples, enabling high sensitivity and specificity. Conventional PCR typically targets mitochondrial genes such as cytochrome c oxidase subunits, while real-time PCR (qPCR) provides quantitative results, allowing estimation of mite load.¹⁹ These PCR techniques can detect infections even in asymptomatic individuals, which is especially valuable for early diagnosis and outbreak control. However, PCR testing requires expensive equipment, technical expertise, and may yield false positives or negatives due to contamination or insufficient DNA.

Isothermal amplification methods, such as loop-mediated isothermal amplification (LAMP), offer a simpler alternative that does not require thermal cycling. LAMP can produce results within an hour and is more adaptable to resource-limited settings. Nonetheless, its diagnostic performance needs validation to match the reliability of PCR-based methods.²⁶

Another emerging tool is serological testing, such as enzyme-linked immunosorbent assay (ELISA), which detects host antibodies against *S. scabiei*. These tests are non-invasive and potentially

sensitive, with some recombinant protein-based assays achieving sensitivities as high as 93%.²⁷ However, variability in host immune responses, particularly among individuals with crusted scabies or compromised immunity, may affect the accuracy of serological interpretations. Overall, while molecular and serological diagnostics offer enhanced detection capabilities, their practical implementation must consider resource availability and the need for further standardization across diverse populations.

Challenges in Diagnosis

Despite these tools, several challenges persist in diagnosing scabies accurately and promptly. In elderly or immunocompromised individuals, atypical presentations and coexisting skin infections can obscure characteristic findings. Clinicians may misdiagnose scabies as eczema, psoriasis, or contact dermatitis, especially when classic burrows are absent or secondary infections dominate the presentation. Inadequate training of healthcare providers, particularly in resource-constrained settings, contributes to underdiagnosis and delays in treatment. This highlights the urgent need for continuous medical education and access to appropriate diagnostic tools.

Treatment: Timing and Efficacy in Relation to Life Stages

Effective treatment of scabies requires an in-depth understanding of the mite's life cycle, including the timing and efficacy of available therapeutics against specific developmental stages. Treatment success hinges on the ability to eliminate all active mites and prevent reinfestation, particularly given that some therapies lack ovicidal activity. The biological resilience of *S. scabiei* and the emergence of treatment resistance highlight the importance of repeat treatment protocols and the ongoing need to develop novel therapeutic options.

Treatment Efficacy Across Life Stages

At the egg stage, topical scabicides such as permethrin and lindane are commonly used but demonstrate limited ovicidal properties. Since eggs are well-protected within the epidermis, they often evade therapeutic action during initial treatment.

Promising agents such as beauvericin have shown in vitro efficacy against *S. scabiei* eggs, suggesting future potential for the development of effective ovicidal treatments.²⁸

The larval stage, while brief, remains a critical point in the mite's life cycle. Treatments like permethrin and ivermectin can be effective against larvae; however, efficacy may vary depending on larval mobility and their superficial location on the skin. Ivermectin, administered orally, works systemically and effectively targets mobile stages like larvae, although it still does not affect unhatched eggs.²⁶

Scabicides are generally most effective during the nymph and adult stages. Permethrin, a synthetic pyrethroid, acts by paralyzing mites through sodium channel inhibition and works efficiently upon direct contact.²⁸ Ivermectin, known for its deeper dermal penetration, is especially effective in crusted scabies where mite burden is extensive.¹⁰ Its success in MDA programs also highlights its value for community-level scabies control.²⁶

Importance of Repeat Treatment

Repeat treatments are critical in ensuring complete eradication of mites due to the asynchronous development of *S. scabiei* and biological factors. The life cycle allows eggs to survive initial treatment and hatch within 3–4 days, meaning larvae can emerge post-treatment and lead to reinfestation. Therefore, a second treatment administered 7 to 14 days after the first dose is commonly recommended to target newly hatched mites.³⁰

Another factor influencing the need for repeated treatment is the host immune response. In cases such as crusted scabies, immune suppression allows for unchecked mite proliferation, making standard treatment regimens less effective.³¹ Treatment failures often arise due to inadequate topical application, incomplete coverage, or neglecting to treat all contacts. These gaps perpetuate reinfestation cycles within households and communities.

Ivermectin: Strengths and Limitations

While ivermectin is a mainstay in scabies management, it presents limitations due to its lack of ovicidal action. Although effective against adult mites and larvae, it does not kill eggs, thereby requiring at least two doses spaced 7–14 days apart for complete clearance. This dosing schedule is particularly important in MDA campaigns and in managing cases among high-risk populations.

Ivermectin's effectiveness also varies across clinical scenarios. In immunocompromised individuals, particularly crusted scabies, higher and more frequent dosing is often necessary, and combination therapy with topical agents is typically advised. Logistical barriers in low-resource settings further limit ivermectin use, as availability, cost, and patient adherence may pose challenges to consistent and effective implementation of treatment programs.

Emerging Resistance and the Need for New Therapies

Emerging resistance to scabicidal agents like ivermectin and permethrin has become an increasingly recognized concern. Selective pressure from repeated use contributes to the evolution of resistant mite populations. Mechanistically, this resistance has been linked to the upregulation of detoxification enzymes, such as glutathione S-transferases (GSTs), which reduce the efficacy of acaricides. Genetic variability among host-specific mite populations influences their susceptibility to treatment, while physiological adaptations—such as more robust exoskeletal barriers or altered metabolic pathways—can limit drug penetration and impair efficacy.²⁶ From a public health perspective, frequent treatment use in both veterinary and human contexts may allow resistance traits to spread between populations. This has been documented in endemic regions and livestock settings, with implications for human transmission and treatment outcomes. Reports of reduced cure rates in previously responsive patients further emphasize the need for evaluation and adaptation of treatment protocols.

Environmental and Behavioral Considerations

Environmental and behavioral factors also influence scabies treatment outcomes. Mite survival is favored by high humidity and moderate

temperatures, while overcrowding and inadequate hygiene accelerate transmission. As such, treatment efforts should be paired with environmental control measures, including regular laundering of clothing and bedding, improved sanitation, and hygiene education. A holistic approach that addresses both medical and environmental determinants is crucial for breaking the cycle of infestation and achieving sustained scabies control.

Control and Prevention: Disrupting the Life Cycle

Effective public health strategies for scabies control must be grounded in an understanding of the life cycle of *S. scabiei*, allowing for targeted interventions that disrupt transmission and reinfection. Public health measures that address both the biological and socio-environmental factors driving transmission are essential for sustainable scabies management. These include environmental interventions, community-level strategies, outbreak response mechanisms, and broader health system approaches.

Targeting Life Stages of the Mite

The life cycle of *S. scabiei* consists of egg, larva, nymph, and adult stages, each of which presents distinct challenges for intervention.³⁰ Treatments such as permethrin are effective against nymphs and adults but lack ovicidal activity, making repeat treatments necessary to eliminate newly hatched larvae. Mass drug administration (MDA) strategies, especially using ivermectin, have been shown to significantly reduce prevalence in high-risk environments like schools, prisons, and refugee camps. Although ivermectin effectively targets active mites, its inability to kill eggs emphasizes the need for strategic retreatment schedules to break the life cycle. Modeling studies have demonstrated the importance of timing MDA interventions according to mite biology to maximize community-level impact.⁹

Environmental and Hygiene Strategies

Environmental interventions are crucial in preventing reinfection. One of the most effective measures is washing bedding and clothing at temperatures of at least 60°C, which eliminates mites and viable eggs on personal items. In addition to

laundering, regular cleaning of shared spaces, especially in institutions such as schools and correctional facilities, helps reduce the environmental reservoir of mites. Improvements in sanitation and hygiene in overcrowded or under-resourced settings also disrupt opportunities for transmission. Treating all household and close contacts simultaneously, even if asymptomatic, is another essential component of breaking the cycle of reinfestation.³²

Community hygiene promotion, including education on handwashing, personal cleanliness, and avoiding the sharing of towels and clothing, empowers individuals to take preventive action. Behavioral interventions should be tailored to local contexts and disseminated through culturally appropriate channels, such as schools, community centers, and religious gatherings. School-based hygiene programs and public awareness campaigns have demonstrated potential in lowering scabies incidence when consistently implemented.

Community Engagement and Outbreak Management

Engaging communities in the planning and implementation of control strategies is key to sustained success. Participatory health education builds trust and promotes early treatment-seeking behavior, especially when culturally adapted to local needs. Education campaigns targeting caregivers, teachers, and healthcare workers can improve understanding of scabies symptoms and transmission dynamics. In high-risk environments, surveillance and prompt case identification are essential. Tracking outbreaks in schools, prisons, and healthcare facilities enables rapid containment measures and supports the deployment of MDA when warranted. Special attention must be given to individuals with crusted scabies, who may act as "super-spreaders" due to high mite loads.

Addressing Socioeconomic Determinants

Scabies affects vulnerable populations, including those living in poverty, overcrowded, and lacking access to healthcare. Populations such as children, pregnant women, and immunocompromised individuals may require additional surveillance and specialized interventions. Holistic programs that

integrate housing improvements, access to clean water, and healthcare services are necessary for long-term control. Partnerships between governments, NGOs, and local communities can enhance the sustainability of scabies programs by combining clinical treatment with environmental and educational components.³²

Fomite Control and Mite Survival Off-Host

A key consideration in scabies control is the ability of mites to survive off-host. Under favorable conditions, *S. scabiei* can survive on clothing, bedding, and surfaces for up to 2–3 days, posing a risk of fomite transmission. This highlights the importance of thorough environmental decontamination, particularly in institutions. Routine cleaning, heat-based disinfection, and in some cases, the use of mite-proof bedding covers can reduce fomite-mediated reinfestation. Guidelines should emphasize these practices as complementary to pharmacological interventions to ensure comprehensive control.

Lessons from One Health Approaches

The One Health approach, which integrates human, animal, and environmental health, provides a useful framework for scabies control. Lessons from veterinary medicine, including integrated pest management and coordinated treatment strategies, may be adapted to human scabies control, especially in settings where zoonotic or community-linked infestations are suspected. Cross-sector collaboration between dermatologists, public health officials, veterinarians, environmental scientists can enhance surveillance and ensure multifaceted responses that account for the biological and ecological complexity of scabies transmission.

Conclusion

This review highlights the pivotal role of the *S. scabiei* life cycle in shaping effective, evidence-based strategies for scabies diagnosis, treatment, and control. By dissecting each developmental stage: egg, larva, nymph, and adult. It becomes evident that the biological behavior of the mite critically influences the timing, sensitivity, and efficacy of diagnostic and therapeutic interventions. For instance, the resistance

of eggs to conventional scabicides underscores the necessity for repeat treatments and the development of ovicidal agents or vaccines. Integrating life cycle knowledge with public health practice strengthens scabies prevention and management at both the individual and community levels. A multidisciplinary approach, parasitology, immunology, and epidemiology, allows interventions to be tailored not only to the biology of the mite but also to the immune response and behavioral context of the host. Mass drug administration, hygiene promotion, and health education, when aligned with life cycle-based treatment regimens, offer synergistic benefits in breaking the transmission chain.

Ultimately, closing gaps in our understanding of the life cycle and host-pathogen interactions will enhance early detection, improve treatment outcomes, and inform scalable public health responses. Embedding this biological perspective into routine clinical and programmatic frameworks is essential to advancing global efforts toward scabies elimination.

References

1. Adiwinoto RP, Diarsvitri W, Diah Utami P, Mantofa AM, Berliana NP, Nabila N, et al. A "forgotten" disease entity? Scabies with secondary infection in a housewife: case report. Surabaya Medical Journal. 2023;1:30–7.
2. Gupta S, Thornley S, Morris A, Sundborn G, Grant C. Prevalence and determinants of scabies: a global systematic review and meta-analysis. Trop Med Int Health. 2024;29:1006–17. doi: 10.1111/tmi.14058
3. Hay RJ, Steer AC, Engelman D, Walton S. Scabies in the developing world—its prevalence, complications, and management. Clin Microbiol Infect. 2012;18:313–23. doi: 10.1111/j.1469-0691.2012.03798.x
4. Fuller LC. Epidemiology of scabies. Curr Opin Infect Dis. 2013;26:123–6. doi: 10.1097/QCO.0b013e32835eb851
5. Ratnasari A, Sungkar S. Prevalensi skabies dan faktor-faktor yang berhubungan di Pesantren X, Jakarta Timur. eJKI. 2014;4. Indonesian. doi: 10.23886/ejki.2.3177
6. Sudarsono, Lakswinar S, Tanjung C. Pengaruh skabies terhadap prestasi belajar santri di sebuah pesantren di kota Medan [Internet]. Medan: Universitas Sumatra Utara; 2016. Available from: <http://repositori.usu.ac.id/handle/123456789/34538>. Indonesian.
7. Thompson MJ, Engelman D, Gholam K, Fuller LC, Steer AC. Systematic review of the diagnosis of scabies in therapeutic trials. Clin Exp Dermatol. 2017;42:481–7. doi: 10.1111/ced.13152
8. Lopes MJ, da Silva ET, Ca J, Gonçalves A, Rodrigues A, Mandjuba C, et al. Perceptions, attitudes and practices towards scabies in communities on the Bijagós Islands, Guinea-Bissau. Trans R Soc Trop Med Hyg. 2019;112:49–56. doi: 10.1093/trstmh/trz102
9. Lydeamore MJ, Campbell PT, Regan DG, Tong SYC, Andrews RM, Steer AC, et al. A biological model of scabies infection dynamics and treatment informs mass drug administration strategies to increase the likelihood of elimination. Math Biosci. 2019;309:163–73. doi: 10.1016/j.mbs.2018.08.007
10. Arlian LG, Morgan MS. A review of *Sarcoptes scabiei*: past, present and future. Parasit Vectors. 2017;10:297. doi: 10.1186/s13071-017-2234-1
11. Sungkar S. Skabies: etiologi-patogenesis-pengobatan pemberantasan & pencegahan. Jakarta: Badan Penerbit FKUI; 2016. Indonesian.
12. Walton SF. The immunology of susceptibility and resistance to scabies. Parasite Immunol. 2010;32:532–40. doi: 10.1111/j.1365-3024.2010.01218.x
13. Zheng Q, Li Y, Zhu W, Xu X, Sheng G, Li L. The Causal effect between human microbiota and scabies: a study from the genetic perspective. Clin Cosmet Investig Dermatol. 2024;17:2803–12. doi: 10.2147/CCID.S491660
14. Widaty S, Martinus M, Rachmawati Y. Erythrodermic manifestation due to hyperinfestation of scabies. Berkala Ilmu Kesehatan Kulit dan Kelamin. 2021;33:141. doi: 10.20473/bikk.V33.2.2021.141-144
15. Stiff KM, Cohen PR. Scabies surrepticius: scabies masquerading as pityriasis rosea. Cureus. 2017;9:e1961. doi: 10.7759/cureus.1961
16. Herwanto N, Mappamasing H, Widiantari S, Indranarum T, Hidayati AN, Sawitri S, et al. Scabies incognito. Dermatol Reports. 2019;11. doi: 10.4081/dr.2019.8083
17. Li FZ, Chen S. Diagnostic accuracy of dermoscopy for scabies. Korean J Parasitol. 2020;58:669–74. doi: 10.3347/kjp.2020.58.6.669
18. Bae M, Kim JY, Jung J, Cha HH, Jeon NY, Lee HJ, et al. Diagnostic value of the molecular detection of *Sarcoptes scabiei* from a skin scraping in patients with suspected scabies. PLoS Negl Trop Dis. 2020;14:e0008229. doi: 10.1371/journal.pntd.0008229
19. Engelman D, Yoshizumi J, Hay RJ, Osti M, Micali G, Norton S, et al. The 2020 International alliance for the control of scabies consensus criteria for the diagnosis of scabies. Br J Dermatol. 2020;183:808–20. doi: 10.1111/bjd.18943
20. Micali G, Lacarrubba F, Verzi AE, Chosidow O, Schwartz RA. Scabies: advances in noninvasive diagnosis. PLoS Negl Trop Dis. 2016;10:e0004691. doi: 10.1371/journal.pntd.0004691
21. Park JH, Kim CW, Kim SS. The diagnostic accuracy of dermoscopy for scabies. Ann Dermatol. 2012;24:194. doi: 10.5021/ad.2012.24.2.194

22. Zhang LW, Wang WJ, Liu XY, Xu L, Zheng L, Li CH, et al. Scabies evaluated by dermoscopy and fluorescence microscopy: a case report. *Int J Dermatol Venereol*. 2021;4:260–2. doi: 10.1097/JD9.0000000000000029
23. Leung V, Miller M. Detection of scabies: a systematic review of diagnostic methods. *Can J Infect Dis Med Microbiol*. 2011;22:143–6. doi: 10.1155/2011/698494
24. Walter B, Heukelbach J, Fengler G, Worth C, Hengge U, Feldmeier H. Comparison of dermoscopy, skin scraping, and the adhesive tape test for the diagnosis of scabies in a resource-poor setting. *Arch Dermatol*. 2011;147:468. doi: 10.1001/archdermatol.2011.51
25. Fraser TA, Carver S, Martin AM, Mounsey K, Polkinghorne A, Jelocnik M. A *Sarcoptes scabiei* specific isothermal amplification assay for detection of this important ectoparasite of wombats and other animals. *PeerJ*. 2018;6:e5291.
26. Rambozzi L, Menzano A, Lavin S, Rossi L. Biotin-avidin amplified ELISA for detection of antibodies to *Sarcoptes scabiei* in chamois (*Rupicapra* spp.). *Vet Res*. 2004;35:701–8.
27. Al Khoury C, Nemer N, Nemer G, Kurban M, Bernigaud C, Fischer K, et al. *In vitro* activity of beauvericin against all developmental stages of *Sarcoptes scabiei*. *Antimicrob Agents Chemother*. 2020;64(5).
28. Sungkar S, Agustin T, Menaldi S, Fuady A, Herqutanto H, Angkasa H, et al. Effectiveness of permethrin standard and modified methods in scabies treatment. *Medical Journal of Indonesia*. 2014;23:93–8.
29. van der Linden N, van Gool K, Gardner K, Dickinson H, Agostino J, Regan DG, et al. A systematic review of scabies transmission models and data to evaluate the cost-effectiveness of scabies interventions. *PLoS Negl Trop Dis*. 2019;13:e0007182.
30. Arlian LG, Feldmeier H, Morgan MS. The potential for a blood test for scabies. *PLoS Negl Trop Dis*. 2015;9:e0004188.
31. Romani L, Whitfield MJ, Korovueta J, Kama M, Wand H, Tikoduadua L, et al. The epidemiology of scabies and impetigo in relation to demographic and residential characteristics: baseline findings from the skin health intervention Fiji Trial. *Am J Trop Med Hyg*. 2017;97:845–50.